Sparse hypergraphs with low independence number

نویسندگان

  • Jeff Cooper
  • Dhruv Mubayi
چکیده

Let K (3) 4 denote the complete 3-uniform hypergraph on 4 vertices. Ajtai, Erdős, Komlós, and Szemerédi (1981) asked if there is a function ω(d) → ∞ such that every 3-uniform, K (3) 4 -free hypergraph H with N vertices and average degree d has independence number at least N d1/2 ω(d). We answer this question by constructing a 3-uniform, K (3) 4 -free hypergraph with independence number at most 2 N d1/2 . We also provide counterexamples to several related conjectures and improve the lower bound of some hypergraph Ramsey numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Lower Bounds for the Independence Number of Sparse Graphs and Hypergraphs

We obtain new lower bounds for the independence number of Kr-free graphs and linear kuniform hypergraphs in terms of the degree sequence. This answers some old questions raised by Caro and Tuza [7]. Our proof technique is an extension of a method of Caro and Wei [6, 20], and we also give a new short proof of the main result of [7] using this approach. As byproducts, we also obtain some non-triv...

متن کامل

Independence densities of hypergraphs

We consider the number of independent sets in hypergraphs, which allows us to define the independence density of countable hypergraphs. Hypergraph independence densities include a broad family of densities over graphs and relational structures, such as F -free densities of graphs for a given graph F. In the case of kuniform hypergraphs, we prove that the independence density is always rational....

متن کامل

Approximate Counting of Matchings in Sparse Hypergraphs

In this paper we give a fully polynomial randomized approximation scheme (FPRAS) for the number of all matchings in hypergraphs belonging to a class of sparse, uniform hypergraphs. Our method is based on a generalization of the canonical path method to the case of uniform hypergraphs.

متن کامل

Sparse Hypergraphs and Pebble Game Algorithms

A hypergraph G = (V, E) is (k, `)-sparse if no subset V ′ ⊂ V spans more than k|V ′|−` hyperedges. We characterize (k, `)-sparse hypergraphs in terms of graph theoretic, matroidal and algorithmic properties. We extend several well-known theorems of Haas, Lovász, Nash-Williams, Tutte, and White and Whiteley, linking arboricity of graphs to certain counts on the number of edges. We also address t...

متن کامل

Large Hinge Width on Sparse Random Hypergraphs

Consider random hypergraphs on n vertices, where each k-element subset of vertices is selected with probability p independently and randomly as a hyperedge. By sparse we mean that the total number of hyperedges is O(n) or O(n lnn). When k = 2, these are exactly the classical Erdös-Rényi random graphs G(n, p). We prove that with high probability, hinge width on these sparse random hypergraphs ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2017